By Topic

Wang-Landau Monte Carlo-Based Tracking Methods for Abrupt Motions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junseok Kwon ; Seoul National University, Seoul ; Kyoung Mu Lee

We propose a novel tracking algorithm based on the Wang-Landau Monte Carlo (WLMC) sampling method for dealing with abrupt motions efficiently. Abrupt motions cause conventional tracking methods to fail because they violate the motion smoothness constraint. To address this problem, we introduce the Wang-Landau sampling method and integrate it into a Markov Chain Monte Carlo (MCMC)-based tracking framework. By employing the novel density-of-states term estimated by the Wang-Landau sampling method into the acceptance ratio of MCMC, our WLMC-based tracking method alleviates the motion smoothness constraint and robustly tracks the abrupt motions. Meanwhile, the marginal likelihood term of the acceptance ratio preserves the accuracy in tracking smooth motions. The method is then extended to obtain good performance in terms of scalability, even on a high-dimensional state space. Hence, it covers drastic changes in not only position but also scale of a target. To achieve this, we modify our method by combining it with the N-fold way algorithm and present the N-Fold Wang-Landau (NFWL)-based tracking method. The N-fold way algorithm helps estimate the density-of-states with a smaller number of samples. Experimental results demonstrate that our approach efficiently samples the states of the target, even in a whole state space, without loss of time, and tracks the target accurately and robustly when position and scale are changing severely.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 4 )