Cart (Loading....) | Create Account
Close category search window
 

A fast and practical approach to genotype phasing and imputation on a pedigree with erroneous and incomplete information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pirola, Y. ; Dipt. di Inf. Sist. e Comun. (DISCo), Univ. degli Studi di Milano-Bicocca, Milan, Italy ; Vedova, G.D. ; Biffani, S. ; Stella, A.
more authors

The MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION problem (MRHC) has been highly successful in providing a sound combinatorial formulation for the important problem of genotype phasing on pedigrees. Despite several algorithmic advances that have improved the efficiency, its applicability to real data sets has been limited since it does not take into account some important phenomena such as mutations, genotyping errors, and missing data. In this work, we propose the MINIMUM-RECOMBINANT HAPLOTYPE CONFIGURATION WITH BOUNDED ERRORS problem (MRHCE), which extends the original MRHC formulation by incorporating the two most common characteristics of real data: errors and missing genotypes (including untyped individuals). We describe a practical algorithm for MRHCE that is based on a reduction to the well-known Satisfiability problem (SAT) and exploits recent advances in the constraint programming literature. An experimental analysis demonstrates the biological soundness of the phasing model and the effectiveness (on both accuracy and performance) of the algorithm under several scenarios. The analysis on real data and the comparison with state-of-the-art programs reveals that our approach couples better scalability to large and complex pedigrees with the explicit inclusion of genotyping errors into the model.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.