By Topic

Efficient Calculation of Sensor Utility and Sensor Removal in Wireless Sensor Networks for Adaptive Signal Estimation and Beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Alexander Bertrand ; Dept. Electrical Engineering ESAT, SCD-SISTA, KU Leuven ; Joseph Szurley ; Peter Ruckebusch ; Ingrid Moerman
more authors

Wireless sensor networks are often deployed over a large area of interest and therefore the quality of the sensor signals may vary significantly across the different sensors. In this case, it is useful to have a measure for the importance or the so-called “utility” of each sensor, e.g., for sensor subset selection, resource allocation or topology selection. In this paper, we consider the efficient calculation of sensor utility measures for four different signal estimation or beamforming algorithms in an adaptive context. We use the definition of sensor utility as the increase in cost (e.g., mean-squared error) when the sensor is removed from the estimation procedure. Since each possible sensor removal corresponds to a new estimation problem (involving less sensors), calculating the sensor utilities would require a continuous updating of K different signal estimators (where K is the number of sensors), increasing computational complexity and memory usage by a factor K. However, we derive formulas to efficiently calculate all sensor utilities with hardly any increase in memory usage and computational complexity compared to the signal estimation algorithm already in place. When applied in adaptive signal estimation algorithms, this allows for on-line tracking of all the sensor utilities at almost no additional cost. Furthermore, we derive efficient formulas for sensor removal, i.e., for updating the signal estimator coefficients when a sensor is removed, e.g., due to a failure in the wireless link or when its utility is too low. We provide a complexity evaluation of the derived formulas, and demonstrate the significant reduction in computational complexity compared to straightforward implementations.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 11 )