By Topic

Biting Off Safely More Than You Can Chew: Predictive Analytics for Resource Over-Commit in IaaS Cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rahul Ghosh ; Duke Univ., Durham, NH, USA ; Vijay K. Naik

Cloud service providers are constantly looking for ways to increase revenue and reduce costs either by reducing capacity requirements or by supporting more users without adding capacity. Over-commit of physical resources, without adding more capacity, is one such approach. Workloads that tend to be 'peaky' are especially attractive targets for over-commit since only occasionally such workloads use all the system resources that they are entitled to. Online identification of candidate workloads and quantification of risks are two key issues associated with over-committing resources. In this paper, to estimate the risks associated with over-commit, we describe a mechanism based on the statistical analysis of the aggregate resource usage behavior of a group of workloads. Using CPU usage data collected from an internal private Cloud, we show that our proposed approach is effective and practical.

Published in:

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on

Date of Conference:

24-29 June 2012