By Topic

Multi-scale local pattern co-occurrence matrix for textural image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiangping Sun ; The Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Vic, 3216, Australia ; Jin Wang ; Ronghua Chen ; Mary F. H. She
more authors

Textural image classification technologies have been extensively explored and widely applied in many areas. It is advantageous to combine both the occurrence and spatial distribution of local patterns to describe a texture. However, most existing state-of-the-art approaches for textural image classification only employ the occurrence histogram of local patterns to describe textures, without considering their co-occurrence information. And they are usually very time-consuming because of the vector quantization involved. Moreover, those feature extraction paradigms are implemented at a single scale. In this paper we propose a novel multi-scale local pattern co-occurrence matrix (MS_LPCM) descriptor to characterize textural images through four major steps. Firstly, Gaussian filtering pyramid preprocessing is employed to obtain multi-scale images; secondly, a local binary pattern (LBP) operator is applied on each textural image to create a LBP image; thirdly, the gray-level co-occurrence matrix (GLCM) is utilized to extract local pattern co-occurrence matrix (LPCM) from LBP images as the features; finally, all LPCM features from the same textural image at different scales are concatenated as the final feature vectors for classification. The experimental results on three benchmark databases in this study have shown a higher classification accuracy and lower computing cost as compared with other state-of-the-art algorithms.

Published in:

The 2012 International Joint Conference on Neural Networks (IJCNN)

Date of Conference:

10-15 June 2012