By Topic

A fuzzy decision support method for customer preferences analysis based on Choquet Integral

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huy Quan Vu ; Sch. of Inf. Technol., Deakin Univ., Burwood, VIC, Australia ; Gang Li ; Beliakov, G.

The explosion of the Web 2:0 platforms, with massive volume of user generated data, has presented many new opportunities as well as challenges for organizations in understanding consumer's behavior to support for business planning process. Feature based sentiment mining has been an emerging area in providing tools for automated opinion discovery and summarization to help business managers with achieving such goals. However, the current feature based sentiment mining systems were only able to provide some forms of sentiments summary with respect to product features, but impossible to provide insight into the decision making process of consumers. In this paper, we will present a relatively new decision support method based on Choquet Integral aggregation function, Shapley value and Interaction Index which is able to address such requirements of business managers. Using a study case of Hotel industry, we will demonstrate how this technique can be applied to effectively model the user's preference of (hotel) features. The presented method has potential to extend the practical capability of sentiment mining area, while, research findings and analysis are useful in helping business managers to define new target customers and to plan more effective marketing strategies.

Published in:

Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on

Date of Conference:

10-15 June 2012