By Topic

Coupled Discriminant Analysis for Heterogeneous Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhen Lei ; Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China ; Shengcai Liao ; Jain, A.K. ; Li, S.Z.

Coupled space learning is an effective framework for heterogeneous face recognition. In this paper, we propose a novel coupled discriminant analysis method to improve the heterogeneous face recognition performance. There are two main advantages of the proposed method. First, all samples from different modalities are used to represent the coupled projections, so that sufficient discriminative information could be extracted. Second, the locality information in kernel space is incorporated into the coupled discriminant analysis as a constraint to improve the generalization ability. In particular, two implementations of locality constraint in kernel space (LCKS)-based coupled discriminant analysis methods, namely LCKS-coupled discriminant analysis (LCKS-CDA) and LCKS-coupled spectral regression (LCKS-CSR), are presented. Extensive experiments on three cases of heterogeneous face matching (high versus low image resolution, digital photo versus video image, and visible light versus near infrared) validate the efficacy of the proposed method.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 6 )
Biometrics Compendium, IEEE