Cart (Loading....) | Create Account
Close category search window
 

Control Synthesis of Discrete-Time T–S Fuzzy Systems Based on a Novel Non-PDC Control Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiangpeng Xie ; Sch. of Electr. Eng. & Autom., Henan Polytech. Univ., Jiaozuo, China ; Hongjun Ma ; Yan Zhao ; Da-Wei Ding
more authors

This paper proposes relaxed stabilization conditions of discrete-time nonlinear systems in the Takagi-Sugeno (T-S) fuzzy form. By using the algebraic property of fuzzy membership functions, a novel nonparallel distributed compensation (non-PDC) control scheme is proposed based on a new class of fuzzy Lyapunov functions. Thus, relaxed stabilization conditions for the underlying closed-loop fuzzy system are developed by applying a new slack variable technique. In particular, some existing fuzzy Lyapunov functions and non-PDC control schemes are special cases of the new Lyapunov function and fuzzy control scheme, respectively. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.