By Topic

Fast Filtering of LiDAR Point Cloud in Urban Areas Based on Scan Line Segmentation and GPU Acceleration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiangyun Hu ; School of Remote Sensing and Information Engineering, Wuhan University, Wuhan , China ; Xiaokai Li ; Yongjun Zhang

The fast filtering of massive point cloud data from light detection and ranging (LiDAR) systems is important for many applications, such as the automatic extraction of digital elevation models in urban areas. We propose a simple scan-line-based algorithm that detects local lowest points first and treats them as the seeds to grow into ground segments by using slope and elevation. The scan line segmentation algorithm can be naturally accelerated by parallel computing due to the independent processing of each line. Furthermore, modern graphics processing units (GPUs) can be used to speed up the parallel process significantly. Using a strip of a LiDAR point cloud, with up to 48 million points, we test the algorithm in terms of both error rate and time performance. The tests show that the method can produce satisfactory results in less than 0.6 s of processing time using the GPU acceleration.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:10 ,  Issue: 2 )