System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Human Performance Measures for Interactive Haptic-Audio-Visual Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dawei Jia ; Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia ; Bhatti, A. ; Nahavandi, S. ; Horan, B.

Virtual reality and simulation are becoming increasingly important in modern society and it is essential to improve our understanding of system usability and efficacy from the users' perspective. This paper introduces a novel evaluation method designed to assess human user capability when undertaking technical and procedural training using virtual training systems. The evaluation method falls under the user-centered design and evaluation paradigm and draws on theories of cognitive, skill-based and affective learning outcomes. The method focuses on user interaction with haptic-audio-visual interfaces and the complexities related to variability in users' performance, and the adoption and acceptance of the technologies. A large scale user study focusing on object assembly training tasks involving selecting, rotating, releasing, inserting, and manipulating three-dimensional objects was performed. The study demonstrated the advantages of the method in obtaining valuable multimodal information for accurate and comprehensive evaluation of virtual training system efficacy. The study investigated how well users learn, perform, adapt to, and perceive the virtual training. The results of the study revealed valuable aspects of the design and evaluation of virtual training systems contributing to an improved understanding of more usable virtual training systems.

Published in:

Haptics, IEEE Transactions on  (Volume:6 ,  Issue: 1 )