By Topic

Automated target recognition on SPLASH 2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Rencher ; Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT, USA ; B. L. Hutchings

Automated target recognition is an application area that requires special-purpose hardware to achieve reasonable performance. FPGA-based platforms can provide a high level of performance for ATR systems if the implementation can be adapted to the limited FPGA and routing resources of these architectures. The paper discusses a mapping experiment where a linear-systolic implementation of an ATR algorithm is mapped to the SPLASH 2 platform. Simple column oriented processors were used throughout the design to achieve high performance with limited nearest neighbor communication. The distributed SPLASH 2 memories are also exploited to achieve a high degree of parallelism. The resulting design is scalable and can be spread across multiple SPLASH 2 boards with a linear increase in performance

Published in:

Field-Programmable Custom Computing Machines, 1997. Proceedings., The 5th Annual IEEE Symposium on

Date of Conference:

16-18 Apr 1997