By Topic

Energy-Efficient Activity Recognition Using Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gordon, D. ; Karlsruhe Inst. of Technol. (KIT), Karlsruhe, Germany ; Czerny, J. ; Miyaki, T. ; Beigl, M.

Energy storage is quickly becoming the limiting factor in mobile pervasive technology. For intelligent wearable applications to be practical, methods for low power activity recognition must be embedded in mobile devices. We present a novel method for activity recognition which leverages the predictability of human behavior to conserve energy. The novel algorithm accomplishes this by quantifying activity-sensor dependencies, and using prediction methods to identify likely future activities. Sensors are then identified which can be temporarily turned off at little or no recognition cost. The approach is implemented and simulated using an activity recognition data set, revealing that large savings in energy are possible at very low cost (e.g. 84% energy savings for a loss of 1.2 pp in recognition).

Published in:

Wearable Computers (ISWC), 2012 16th International Symposium on

Date of Conference:

18-22 June 2012