By Topic

Atomic Layer Deposition of \hbox {SiO}_{2} for AlGaN/GaN MOS-HFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kirkpatrick, Casey J. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Bongmook Lee ; Suri, Rahul ; Xiangyu Yang
more authors

This letter investigates the electrical properties of SiO2 gate dielectric on GaN heterostructures deposited by atomic layer deposition (ALD). ALD SiO2 has a dielectric constant of 3.9 and a bandgap of 8.8 eV. ALD SiO2 provides a good interface to GaN and minimizes the interfacial layer growth. The threshold voltage of metal-oxide-semiconductor heterojunction field-effect transistors with ALD SiO2 dielectric is -1.5 V, owing to a fixed charge concentration of -1.6 × 1012 cm-2. It was also found that devices with ALD SiO2 dielectric exhibit three orders of magnitude reduction in gate leakage current compared to conventional Schottky gate HFETs.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 9 )