By Topic

Dynamic programming for trajectory optimization of engine-out transportation aircraft

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The purpose of this communication is to contribute to the development of a new trajectory management capability for an engine-out transportation aircraft. Engine-out is a dramatic situation for flight safety and this study focuses on the design of a management system for emergency trajectories at this special situation. First the gliding characteristics and flying qualities of a transport aircraft with total engine failure are analyzed while gliding range estimation is considered. Then a new representation of the flight dynamics of an engine-out aircraft is proposed where the space variable is chosen as independent parameter instead of the time variable. This allows to propose a new formulation of the corresponding trajectory optimization problem and to develop a reverse dynamic programming solution technique. Simulation results are displayed and new development perspectives are discussed.

Published in:

Control and Decision Conference (CCDC), 2012 24th Chinese

Date of Conference:

23-25 May 2012