By Topic

Mesoscopic Model for the Electromagnetic Properties of Arrays of Nanotubes and Nanowires: A Bulk Equivalent Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Franck, P. ; French Nat. Centre for Sci. Res., Nanyang Technol. Univ., Singapore, Singapore ; Baillargeat, D. ; Beng Kang Tay

We propose a new bulk approach to the electromagnetic (EM) modeling of nanotubes (NTs) and nanowires (NWs) in arrays or bundles of arbitrary shape and size. The purpose of this model is to enable feasible and efficient EM analysis of electronics designs incorporating these novel materials by using the available software. A general and straightforward approach to derive anisotropic bulk conductivity from single-element models is exposed. The specific model for single-wall carbon nanotubes (SWCNTs) is then adapted from a broadly accepted one. Both models have been implemented in two different 3D EM solvers. Through simulation of single and bundled carbon nanotube (CNT) structures, we demonstrate the near equivalence of both models in transmission as well as in radiation. Finally we demonstrate, for the first time, the full EM simulation of a device integrating CNTs.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 5 )