By Topic

Shadow Removal Using Bilateral Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qingxiong Yang ; Department of Computer Science, City University of Hong Kong, Hong Kong, ; Kar-Han Tan ; Narendra Ahuja

In this paper, we propose a simple but effective shadow removal method using a single input image. We first derive a 2-D intrinsic image from a single RGB camera image based solely on colors, particularly chromaticity. We next present a method to recover a 3-D intrinsic image based on bilateral filtering and the 2-D intrinsic image. The luminance contrast in regions with similar surface reflectance due to geometry and illumination variances is effectively reduced in the derived 3-D intrinsic image, while the contrast in regions with different surface reflectance is preserved. However, the intrinsic image contains incorrect luminance values. To obtain the correct luminance, we decompose the input RGB image and the intrinsic image. Each image is decomposed into a base layer and a detail layer. We obtain a shadow-free image by combining the base layer from the input RGB image and the detail layer from the intrinsic image such that the details of the intrinsic image are transferred to the input RGB image from which the correct luminance values can be obtained. Unlike previous methods, the presented technique is fully automatic and does not require shadow detection.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 10 )