By Topic

An SVM Ensemble Approach Combining Spectral, Structural, and Semantic Features for the Classification of High-Resolution Remotely Sensed Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xin Huang ; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China ; Liangpei Zhang

In recent years, the resolution of remotely sensed imagery has become increasingly high in both the spectral and spatial domains, which simultaneously provides more plentiful spectral and spatial information. Accordingly, the accurate interpretation of high-resolution imagery depends on effective integration of the spectral, structural and semantic features contained in the images. In this paper, we propose a new multifeature model, aiming to construct a support vector machine (SVM) ensemble combining multiple spectral and spatial features at both pixel and object levels. The features employed in this study include a gray-level co-occurrence matrix, differential morphological profiles, and an urban complexity index. Subsequently, three algorithms are proposed to integrate the multifeature SVMs: certainty voting, probabilistic fusion, and an object-based semantic approach, respectively. The proposed algorithms are compared with other multifeature SVM methods including the vector stacking, feature selection, and composite kernels. Experiments are conducted on the hyperspectral digital imagery collection experiment DC Mall data set and two WorldView-2 data sets. It is found that the multifeature model with semantic-based postprocessing provides more accurate classification results (an accuracy improvement of 1-4% for the three experimental data sets) compared to the voting and probabilistic models.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:51 ,  Issue: 1 )