By Topic

On the Use of a Cluster Ensemble Cloud Classification Technique in Satellite Precipitation Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Majid Mahrooghy ; Department of Electrical Engineering, Mississippi State University, Mississippi State, MS, USA ; Nicolas H. Younan ; Valentine G. Anantharaj ; James Aanstoos
more authors

In this paper, the link-based cluster ensemble (LCE) method is utilized to improve cloud classification and satellite precipitation estimation. High resolution Satellite Precipitation Estimation (SPE) is based on the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification (PERSIANN-CCS) algorithm. This modified SPE with the incorporation of LCE involves the following four steps: 1) segmentation of infrared cloud images into patches; 2) cloud patch feature extraction; 3) clustering cloud patches using LCE; and 4) dynamic application of brightness temperature (Tb) and rain-rate relationships, derived using satellite observations. In order to cluster the cloud patches, the LCE method combines multiple data partitions from different clustering methods. The results show that using the cluster ensemble increases the performance of rainfall estimates compared to the SPE algorithm using a Self Organizing Map (SOM) neural network. The false alarm ratio (FAR), probabilities of detection (POD), equitable threat score (ETS), and bias are used as quantitative measures to assess the performance of the algorithm. It is shown that both the ETS and bias provide improvement in the summer and winter seasons. Almost 5% ETS improvement is obtained at some threshold values for the winter season using the cluster ensemble.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:5 ,  Issue: 5 )