By Topic

Optimal Design of Large Permanent Magnet Synchronous Generators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tapia, J.A. ; Electr. Eng. Dept., Univ. of Concepcion, Concepcion, Chile ; Pyrhonen, J. ; Puranen, J. ; Lindh, P.
more authors

High power machine has become a large market for wind power and ship propulsion electric, among other applications. Since the size of these machines is much larger than conventional industrial ones, optimum design must be considered in order to reduce the material cost and increase profitability. In this paper, a simple analytic optimization algorithm is used to maximize the apparent airgap power transferred under tangential stress constraint. In this approach, close related expressions between the main design variables, operational restrictions, and external dimensions are derived to build the mathematical structure of the optimization process. To improve the torque capacity estimation of the designed machine, a correction procedure, based on the previous result, is used to remove the idealizations considered for the initial design. Close agreement with the finite element analysis results are found with this approach, which is based on analytical method.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 1 )