By Topic

A structural and relational approach to handwritten word recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Buse, R. ; Dept. of Comput. Sci., Melbourne Univ., Parkville, Vic., Australia ; Zhi-Qiang Liu ; Caelli, T.

In this paper, we present a new off-line word recognition system that is able to recognize unconstrained handwritten words using grey-scale images. This is based on structural and relational information in the handwritten word. We use Gabor filters to extract features from the words, and then use an evidence-based approach for word classification. A solution to the Gabor filter parameter estimation problem is given, enabling the Gabor filter to be automatically tuned to the word image properties. We also developed two new methods for correcting the slope of the handwritten words. Our experiments show that the proposed method achieves good recognition rates compared to standard classification methods

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )