By Topic

Real-Time Path Planning for Coordinated Transport of Multiple Particles Using Optical Tweezers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ashis Gopal Banerjee ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA ; Sagar Chowdhury ; Wolfgang Losert ; Satyandra K. Gupta

Automated transport of multiple particles using optical tweezers requires real-time path planning to move them in coordination by avoiding collisions among themselves and with randomly moving obstacles. This paper develops a decoupled and prioritized path planning approach by sequentially applying a partially observable Markov decision process algorithm on every particle that needs to be transported. We use an iterative version of a maximum bipartite graph matching algorithm to assign given goal locations to such particles. We then employ a three-step method consisting of clustering, classification, and branch and bound optimization to determine the final collision-free paths. We demonstrate the effectiveness of the developed approach via experiments using silica beads in a holographic tweezers setup. We also discuss the applicability of our approach and challenges in manipulating biological cells indirectly by using the transported particles as grippers.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:9 ,  Issue: 4 )