Cart (Loading....) | Create Account
Close category search window
 

A self-tuning EWMA controller utilizing artificial neural network function approximation techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Smith, T.H. ; Microsystems Technol. Lab., MIT, Cambridge, MA, USA ; Boning, D.S.

Recent works have shown that an exponentially weighted moving average (EWMA) controller can be used on semiconductor processes to maintain process targets over extended periods for improved product quality and decreased machine downtime. Proper choice of controller parameters (EWMA weights) is critical to the performance of this system. This work examines how different process factors affect the optimal controller parameters. We show that a function mapping from the disturbance state (magnitude of linear drift and random noise) of a given process to the corresponding optimal EWMA weights can be generated, and an artificial neural network (ANN) trained to learn the mapping. A self-tuning EWMA controller is proposed which dynamically updates its controller parameters by estimating the disturbance state and using the ANN function mapping to provide updates to the controller parameters. The result is an adaptive controller which eliminates the need for an experienced engineer to tune the controller, thereby allowing it to be more easily applied to semiconductor processes

Published in:

Components, Packaging, and Manufacturing Technology, Part C, IEEE Transactions on  (Volume:20 ,  Issue: 2 )

Date of Publication:

Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.