By Topic

A Partially Supervised Approach for Detection and Classification of Buried Radioactive Metal Targets Using Electromagnetic Induction Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anish C. Turlapaty ; University of Maryland Eastern Shore, Princess Anne, MD, USA ; Qian Du ; Nicolas H. Younan

The analysis of the data obtained from electromagnetic induction (EMI) sensors is one of the most viable tools for the detection of metallic objects buried under soil. The existing detection methods usually consist of sophisticated EM modeling of the source/target geometry to build suitable discriminators. The major technical challenge in this field is the reduction of false alarms with an increase of the detection probability. In this paper, we propose a partially supervised approach to detect buried radioactive targets, i.e., depleted uranium, without sophisticated EM modeling. Using the EMI data obtained by a GEM-3 sensor for a field survey, our proposed algorithm can successfully detect and discriminate the targets from nontarget metals, compared to other unsupervised and supervised approaches.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:51 ,  Issue: 1 )