By Topic

Analysis and Validation of a Population-Based Design of a Wound-Rotor Synchronous Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michelle L. Bash ; PC Krause and Associates, Dayton, USA ; Steve Pekarek

In recent research, a new magnetic equivalent circuit model and solution technique were developed to enable rapid calculation of the performance of wound-rotor synchronous machines. Herein, the development of a population-based design tool that utilizes the MEC is first described. The design tool is then applied to perform multiobjective optimization of a 2-kW portable power generator. Validation has been achieved through construction of a machine that was selected from the Pareto-optimal front (POF) of mass versus loss. Comparisons are made between designed and measured torque (instantaneous and average), open-circuit voltage, efficiency, and q- and d-axis flux linkages. This comparison is done in light of observations that the anhysteretic BH curve for the steel material obtained prior to and subsequent to machine construction have significant differences. Despite the variance, the measured and expected performances match reasonably well. Finally, an analysis of the machines on the POF is used to shed light on several interesting trends in design variables.

Published in:

IEEE Transactions on Energy Conversion  (Volume:27 ,  Issue: 3 )