By Topic

Semisupervised Local Discriminant Analysis for Feature Extraction in Hyperspectral Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wenzhi Liao ; Department of Telecommunications and Information Processing, Ghent University, Ghent, Belgium ; Aleksandra Pizurica ; Paul Scheunders ; Wilfried Philips
more authors

We propose a novel semisupervised local discriminant analysis method for feature extraction in hyperspectral remote sensing imagery, with improved performance in both ill-posed and poor-posed conditions. The proposed method combines unsupervised methods (local linear feature extraction methods and supervised method (linear discriminant analysis) in a novel framework without any free parameters. The underlying idea is to design an optimal projection matrix, which preserves the local neighborhood information inferred from unlabeled samples, while simultaneously maximizing the class discrimination of the data inferred from the labeled samples. Experimental results on four real hyperspectral images demonstrate that the proposed method compares favorably with conventional feature extraction methods.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:51 ,  Issue: 1 )