By Topic

Analysis and Evaluation of DC-Link Capacitors for High-Power-Density Electric Vehicle Drive Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huiqing Wen ; Masdar Institute of Science and Technology, Abu Dhabi, UAE ; Weidong Xiao ; Xuhui Wen ; Peter Armstrong

In electric vehicle (EV) inverter systems, direct-current-link capacitors, which are bulky, heavy, and susceptible to degradation from self heating, can become a critical obstacle to high power density. This paper presents a comprehensive method for the analysis and comparative evaluation of dc-link capacitor applications to minimize the volume, mass, and capacitance. Models of equivalent series resistance that are valid over a range of frequency and operating temperature are derived and experimentally validated. The root-mean-square values and frequency spectra of the capacitor current are analyzed with respect to three modulation strategies and various operating conditions over practical ranges of load power factor and modulation index in EV drive systems. The modeling and analysis also consider the self-heating process and resulting core temperature of the dc-link capacitors, which impacts their lifetimes. Based on an 80-kW permanent-magnet (PM) motor drive system, the application of electrolytic capacitors and film capacitors has been evaluated by both simulation and experimental tests. The inverter power density is improved from 2.99 kW/L to 13.3 kW/L, without sacrificing the system performance in terms of power loss, core temperature, and lifetime.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:61 ,  Issue: 7 )