Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Dependence of DRAM Device Performance on Passivation Annealing Position in Trench and Stack Structures for Manufacturing Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Lee, C.-Y. ; Advanced Technology Group, Inotera Memories, Inc., Taoyuan, Taiwan ; Lai, C.-S. ; Yang, C.-M. ; Wang, D. H.-L.

The dependence of dynamic random access memory (DRAM) device performance on trench and stack cell structures was first observed by changing the process position of passivation annealing. For the trench DRAM, the data retention fail bit counts (FBCs) decreased by 18% and the cell transistor threshold voltage (CTVth) shift by 53 mV. The FBCs are primarily influenced by the junction leakage current. In contrast, for the stack DRAM, the data retention FBCs increased by 225% and the CTVth shift increased by 20 mV. The FBCs are primarily influenced by the gate-induced drain leakage (GIDL) current because of the large gate and the drain overlap region in the recess channel array transistor (RCAT). The interface states increased after the deposition of the plasma nitride layer, as observed in the charge pumping measurement in the trench DRAM. Transmission electron microscopy indicated that the gate oxide thickness in the bottom region of the RCAT is thinner to generate gate oxide leakage. Furthermore, a decrease in the activation energy from 0.64 to 0.55 eV implies the occurrence of GIDL current, which corresponds to the FBC analysis result. This paper demonstrated that the passivation annealing position requires careful adjustment for device and manufacturing optimization.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:25 ,  Issue: 4 )