By Topic

Analysis, Design and Control of a Unified Power-Quality Conditioner Based on a Current-Source Topology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Melin, P.E. ; Electr. Eng. Dept., Concepcion Univ., Concepción, Chile ; Espinoza, J.R. ; Moran, L.A. ; Rodriguez, J.R.
more authors

This paper presents a three-phase unified power-quality conditioner based on current source converters (CSC-UPQC), including the design guidelines of the key components, an appropriate control scheme, and a selection procedure of the dc current level. Particularly, the ride through capability criterion is used to define a minimum dc current level so that the CSC-UPQC achieves the same characteristics as a UPQC based on voltage-source converters in terms of voltage disturbance compensation in the point of common coupling (PCC) and load power factor compensation. A 1.17 MVA load fed from a 3.3 kV system is used to show the proposed design procedure, and a laboratory prototype is implemented to show the system compensating sags and swells using low switching frequency in the CSC and maintaining a unitary displacement power factor in the PCC.

Published in:

Power Delivery, IEEE Transactions on  (Volume:27 ,  Issue: 4 )