Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Hardware experiments of humanoid robot safe fall using Aldebaran NAO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seung-kook Yun ; Honda Res. Inst. US., Mountain View, CA, USA ; Goswami, A.

Although the fall of a humanoid robot is rare in controlled environments, it cannot be avoided in the real world where the robot may physically interact with the environment. Our earlier work [1], [2] introduced the strategy of direction-changing fall, in which the robot attempts to reduce the chance of human injury by changing its default fall direction in real-time and falling in a safer direction. The current paper reports further theoretical developments culminating in a successful hardware implementation of this fall strategy conducted on the Aldebaran NAO robot[3]. This includes new algorithms for humanoid kinematics and Jacobians involving coupled joints and a complete estimation of the body frame attitude using an additional inertial measurement unit. Simulations and experiments are smoothly handled by our platform independent humanoid control software package called Locomote. We report experiment scenarios where we demonstrate the effectiveness of the proposed strategies in changing humanoid fall direction.

Published in:

Robotics and Automation (ICRA), 2012 IEEE International Conference on

Date of Conference:

14-18 May 2012