By Topic

Compact Thermal Resistor-Capacitor-Network Approach to Predicting Transient Junction Temperatures of a Power Amplifier Module

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu, Y. ; Dept. of Mech. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Lee, T.-Y.T. ; Chiriac, V.A.

Junction temperature is an important issue for a semiconductor package, influencing the package's thermal, mechanical, and reliability performance. An accurate prediction of junction temperature provides informative guidance in design, development and operation of the package. A compact thermal resistor-capacitor (RC) network approach is presented in this paper to accurately predict transient junction temperatures. The thermal RC network in this approach is a nongrounded Foster network. This approach consists of extraction of the thermal Foster network and prediction of the transient junction temperature response to a given power input using the extracted network. The network extraction part is based on Kirchhoff's current law and Laplace transformation technique, and uses the Foster network to facilitate changes of the RC network structure. The temperature prediction part is a direct substitution-and-calculation process, and therefore is fast to carry out. Since Laplace transforms are directly or indirectly available for most power inputs, their transient temperatures may be predicted by the proposed approach. Superposition is employed in cases where the Laplace transform of a given power input is not directly found in Laplace tables, or where the junction temperature is affected by multiple heat sources. The proposed approach is demonstrated with a power amplifier (PA) module; predicted junction temperatures are accurate in both single and multiple heat source cases.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:2 ,  Issue: 7 )