By Topic

Supervised Graph Embedding for Polarimetric SAR Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lei Shi ; State Key Lab. of Inf. Eng. in Surveying, Mapping & Remote Sensing, Wuhan Univ., Wuhan, China ; Lefei Zhang ; Jie Yang ; Liangpei Zhang
more authors

This letter introduces an efficiency-manifold-learning-based supervised graph embedding (SGE) algorithm for polarimetric synthetic aperture radar (POLSAR) image classification. We use a linear dimensionality reduction technology named SGE to obtain a low-dimensional subspace which can preserve the discriminative information from training samples. Various POLSAR decomposition features are stacked into the input feature cube in the original high-dimensional feature space. The SGE is then implemented to project the input feature into the learned subspace for subsequent classification. The suggested method is validated by the full polarimetric airborne SAR system EMISAR, in Foulum, Denmark. The experiments show that the SGE presents a favorable classification accuracy and the valid components of the multifeature cube are also distinguished.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 2 )