By Topic

Shape Deformation in Two-Dimensional Electrical Impedance Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boyle, A. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada ; Adler, A. ; Lionheart, W.R.B.

Electrical impedance tomography (EIT) uses measurements from surface electrodes to reconstruct an image of the conductivity of the contained medium. However, changes in measurements result from both changes in internal conductivity and changes in the shape of the medium relative to the electrode positions. Failure to account for shape changes results in a conductivity image with significant artifacts. Previous work to address shape changes in EIT has shown that in some cases boundary shape and electrode location can be uniquely determined for isotropic conductivities; however, for geometrically conformal changes, this is not possible. This prior work has shown that the shape change problem can be partially addressed. In this paper, we explore the limits of compensation for boundary movement in EIT using three approaches. First, a theoretical model was developed to separate a deformation vector field into conformal and non-conformal components, from which the reconstruction limits may be determined. Next, finite element models were used to simulate EIT measurements from a domain whose boundary has been deformed. Finally, an experimental phantom was constructed from which boundary deformation measurements were acquired. Results, both in simulation and with experimental data, suggest that some electrode movement and boundary distortions can be reconstructed based on conductivity changes alone while reducing image artifacts in the process.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 12 )