Cart (Loading....) | Create Account
Close category search window
 

Cooperative Access in Wireless Networks: Stable Throughput and Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Beiyu Rong ; Marvell Semiconductor, Inc., Santa Clara, CA, USA ; Ephremides, Anthony

We investigate the impact of a protocol-level cooperation idea in a wireless multiple-access system. By dynamically and opportunistically exploiting spatial diversity among the $N$ source users, a packet is delivered to the common destination through either a direct link or through cooperative relaying by intermediate source nodes that have a statistically better channel to the destination. The traffic burstiness at the source is taken into account, and the performance metrics of the stable throughput region and delay are evaluated for the case of packet-erasure channels. We consider conflict-free, work-conserving transmission policies as well as plain time-division multiple-access policy. We establish that the stable throughput regions under both classes of cooperative policies are the same, which strictly contain the stable throughput regions achieved without cooperation. Moreover, the optimal policy for minimizing the average delay among the class of all cooperative work-conserving policies is determined. Then, in the case of two users, the closed-form delay expressions are explicitly derived as well. Our results indicate that cooperation can significantly reduce delay for both users.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 9 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.