By Topic

Sparse Signal Reconstruction via ECME Hard Thresholding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kun Qiu ; Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA ; Aleksandar Dogandzic

We propose a probabilistic model for sparse signal reconstruction and develop several novel algorithms for computing the maximum likelihood (ML) parameter estimates under this model. The measurements follow an underdetermined linear model where the regression-coefficient vector is the sum of an unknown deterministic sparse signal component and a zero-mean white Gaussian component with an unknown variance. Our reconstruction schemes are based on an expectation-conditional maximization either (ECME) iteration that aims at maximizing the likelihood function with respect to the unknown parameters for a given signal sparsity level. Compared with the existing iterative hard thresholding (IHT) method, the ECME algorithm contains an additional multiplicative term and guarantees monotonic convergence for a wide range of sensing (regression) matrices. We propose a double overrelaxation (DORE) thresholding scheme for accelerating the ECME iteration. We prove that, under certain mild conditions, the ECME and DORE iterations converge to local maxima of the likelihood function. The ECME and DORE iterations can be implemented exactly in small-scale applications and for the important class of large-scale sensing operators with orthonormal rows used e.g., partial fast Fourier transform (FFT). If the signal sparsity level is unknown, we introduce an unconstrained sparsity selection (USS) criterion and a tuning-free automatic double overrelaxation (ADORE) thresholding method that employs USS to estimate the sparsity level. We compare the proposed and existing sparse signal reconstruction methods via one-dimensional simulation and two-dimensional image reconstruction experiments using simulated and real X-ray CT data.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 9 )