By Topic

Automatic License Plate Recognition (ALPR): A State-of-the-Art Review

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shan Du ; IntelliView Technol., Inc., Calgary, AB, Canada ; Ibrahim, M. ; Shehata, M. ; Badawy, W.

Automatic license plate recognition (ALPR) is the extraction of vehicle license plate information from an image or a sequence of images. The extracted information can be used with or without a database in many applications, such as electronic payment systems (toll payment, parking fee payment), and freeway and arterial monitoring systems for traffic surveillance. The ALPR uses either a color, black and white, or infrared camera to take images. The quality of the acquired images is a major factor in the success of the ALPR. ALPR as a real-life application has to quickly and successfully process license plates under different environmental conditions, such as indoors, outdoors, day or night time. It should also be generalized to process license plates from different nations, provinces, or states. These plates usually contain different colors, are written in different languages, and use different fonts; some plates may have a single color background and others have background images. The license plates can be partially occluded by dirt, lighting, and towing accessories on the car. In this paper, we present a comprehensive review of the state-of-the-art techniques for ALPR. We categorize different ALPR techniques according to the features they used for each stage, and compare them in terms of pros, cons, recognition accuracy, and processing speed. Future forecasts of ALPR are given at the end.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:23 ,  Issue: 2 )