By Topic

Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Owen D. Miller ; Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA ; Eli Yablonovitch ; Sarah R. Kurtz

Absorbed sunlight in a solar cell produces electrons and holes. However, at the open-circuit condition, the carriers have no place to go. They build up in density, and ideally, they emit external luminescence that exactly balances the incoming sunlight. Any additional nonradiative recombination impairs the carrier density buildup, limiting the open-circuit voltage. At open circuit, efficient external luminescence is an indicator of low internal optical losses. Thus, efficient external luminescence is, counterintuitively, a necessity for approaching the Shockley–Queisser (SQ) efficiency limit. A great solar cell also needs to be a great light-emitting diode. Owing to the narrow escape cone for light, efficient external emission requires repeated attempts and demands an internal luminescence efficiency 90%.

Published in:

IEEE Journal of Photovoltaics  (Volume:2 ,  Issue: 3 )