Cart (Loading....) | Create Account
Close category search window
 

Detection, binning, and analysis of defects in a GaN-on-Si process for High Brightness Light Emitting Diode's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

High Brightness Light Emitting Diode's (HB-LED's) have received considerable attention during the last few years due to their utilization in numerous consumer products (automotive, displays, etc.). Recently, one of the largest emerging markets for HB-LED's is the lighting industry because of its lower power requirements and longer lifetime. One of the key limitations for its universal consumer adoption is its higher cost. If the cost for production of an HB-LED is broken up into materials and process steps the price of the sapphire substrate is noticed to be significantly higher than all the individual process and material steps. In such a circumstance the key to making HB-LED's cheaper is by substrate engineering. Another aspect of the cost is the fact that the traditional sapphire substrates are usually 2 or 4 inches. Therefore, a logical step forward is to move to bigger substrates where yield can be higher. To make this a reality different groups have been working on alternative cheaper and larger substrates (Si/Glass). However, before any technology becomes mature numerous reliability and yield issues need to be fixed. As part of process optimization identifying killer defects is critical. In order to do so we use the Candela platform from KLA Tencor to monitor our epitaxial process. Since, silicon wafers are one of the most common substrates available it obviously emerged as a first choice. We at IMEC have developed a GaN on Si process for making HB-LED's on 200mm Si (111) substrates. The control of the first epitaxial layers on Si is the key to a successful HB-LED fabrication. Lattice mismatch and thermal coefficient mismatch often lead to wafer bow and defect propagation to the p-GaN surface which can be detrimental to the IQE (Internal Quantum Efficiency). The goal of this work is to understand the different types of defect and the nature of their origin on a typical HB LED stack as well as the detection capability of the tool. Typical defects detecte- are the cracks/hexagonal defects/pits and particles. Defect data will be analyzed in terms of compressive or tensile stress in the film. This paper focuses on un-optimized EPI wafers in terms of stress/defectivity and crystalline quality to help define the correct inspection thresholds.

Published in:

Advanced Semiconductor Manufacturing Conference (ASMC), 2012 23rd Annual SEMI

Date of Conference:

15-17 May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.