By Topic

Double Shrinking Sparse Dimension Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tianyi Zhou ; Fac. of Eng. & Inf. Technol., Univ. of Technol., Sydney, NSW, Australia ; Dacheng Tao

Learning tasks such as classification and clustering usually perform better and cost less (time and space) on compressed representations than on the original data. Previous works mainly compress data via dimension reduction. In this paper, we propose “double shrinking” to compress image data on both dimensionality and cardinality via building either sparse low-dimensional representations or a sparse projection matrix for dimension reduction. We formulate a double shrinking model (DSM) as an l1 regularized variance maximization with constraint ||x||2=1, and develop a double shrinking algorithm (DSA) to optimize DSM. DSA is a path-following algorithm that can build the whole solution path of locally optimal solutions of different sparse levels. Each solution on the path is a “warm start” for searching the next sparser one. In each iteration of DSA, the direction, the step size, and the Lagrangian multiplier are deduced from the Karush-Kuhn-Tucker conditions. The magnitudes of trivial variables are shrunk and the importances of critical variables are simultaneously augmented along the selected direction with the determined step length. Double shrinking can be applied to manifold learning and feature selections for better interpretation of features, and can be combined with classification and clustering to boost their performance. The experimental results suggest that double shrinking produces efficient and effective data compression.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 1 )