By Topic

Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Makitalo, M. ; Dept. of Signal Process., Tampere Univ. of Technol., Tampere, Finland ; Foi, A.

Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 1 )