By Topic

Efficient Moving Object Detection for Lightweight Applications on Smart Cameras

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Carlos Cuevas ; Grupo de Tratamiento de Imagenes (GTI), Univ. Politec. de Madrid, Madrid, Spain ; Narciso Garcia

Recently, the number of electronic devices with smart cameras has grown enormously. These devices require new, fast, and efficient computer vision applications that include moving object detection strategies. In this paper, a novel and high-quality strategy for real-time moving object detection by nonparametric modeling is presented. It is suitable for its application to smart cameras operating in real time in a large variety of scenarios. While the background is modeled using an innovative combination of chromaticity and gradients, reducing the influence of shadows and reflected light in the detections, the foreground model combines this information and spatial information. The application of a particle filter allows to update the spatial information and provides a priori knowledge about the areas to analyze in the following images, enabling an important reduction in the computational requirements and improving the segmentation results. The quality of the results and the achieved computational efficiency show the suitability of the proposed strategy to enable new applications and opportunities in last generation of electronic devices.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:23 ,  Issue: 1 )