By Topic

A Switched-Inductor Integrated Voltage Regulator With Nonlinear Feedback and Network-on-Chip Load in 45 nm SOI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Noah Sturcken ; Department of Electrical Engineering, Columbia University, New York, NY, USA ; Michele Petracca ; Steven Warren ; Paolo Mantovani
more authors

A four-phase integrated buck converter in 45 nm silicon-on-insulator (SOI) technology is presented. The controller uses unlatched pulse-width modulation (PWM) with nonlinear gain to provide both stable small-signal dynamics and fast response (~700 ps) to large input and output transients. This fast control approach reduces the required output capacitance by 5× in comparison to a conventional, latched PWM controller at a similar operating point. The converter switches package-integrated air-core inductors at 80 MHz and delivers 1 A/mm2 at 83% efficiency and 0.66 conversion ratio. A network-on-chip (NoC) serves as a realistic digital load along with a programmable current source capable of generating load current steps with slew rate of ~1 A/100 ps for characterization of the control scheme.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:47 ,  Issue: 8 )