By Topic

Nighttime Brake-Light Detection by Nakagami Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Duan-Yu Chen ; Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taiwan ; Yu-Hao Lin ; Yang-Jie Peng

Given the rapid expansion of car ownership worldwide, vehicle safety is an increasingly critical issue in the automobile industry. The reduced cost of cameras and optical devices has made it economically feasible to deploy front-mounted intelligent systems for visual-based event detection for forward collision avoidance and mitigation. While driving at night, vehicles in front are generally visible by their taillights and brake lights. The brake lights are particularly important because they signal deceleration and potential collision. Therefore, in this paper, we propose a novel visual-based approach, based on the Nakagami-m distribution, for detecting brake lights at night by analyzing the taillights. Rather than using the knowledge of the heuristic features, such as the symmetry, position, and size of the rear-facing vehicle, we focus on finding the invariant features to model brake light scattering by Nakagami imaging and therefore conduct the detection process in a part-based manner. Experiments on an extensive data set show that our proposed system can effectively detect vehicle braking under different lighting and traffic conditions and thus demonstrates its feasibility in real-world environments.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:13 ,  Issue: 4 )