By Topic

A Spatial Contextual Postclassification Method for Preserving Linear Objects in Multispectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rodriguez-Cuenca, B. ; Dept. of Math., Univ. of Alcala, Alcala de Henares, Spain ; Malpica, J.A. ; Alonso, M.C.

Classification of remote sensing multispectral data is important for segmenting images and thematic mapping and is generally the first step in feature extraction. Per-pixel classification, based on spectral information alone, generally produces noisy classification results. The introduction of spatial information has been shown to be beneficial in removing most of this noise. Probabilistic label relaxation (PLR) has proved to be advantageous using second-order statistics; here, we present a modified contextual probabilistic relaxation method based on imposing directional information in the joint probability with third-order statistics. The proposed method was tested in synthetic images and real images; the results are compared with a “Majority” algorithm and the classical PLR method. The proposed third-order method gives the best results, both visually and numerically.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 1 )