By Topic

Reproducing Kernel Hilbert Space Approach for the Online Update of Radial Bases in Neuro-Adaptive Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hassan A. Kingravi ; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA ; Girish Chowdhary ; Patricio A. Vela ; Eric N. Johnson

Classical work in model reference adaptive control for uncertain nonlinear dynamical systems with a radial basis function (RBF) neural network adaptive element does not guarantee that the network weights stay bounded in a compact neighborhood of the ideal weights when the system signals are not persistently exciting (PE). Recent work has shown, however, that an adaptive controller using specifically recorded data concurrently with instantaneous data guarantees boundedness without PE signals. However, the work assumes fixed RBF network centers, which requires domain knowledge of the uncertainty. Motivated by reproducing kernel Hilbert space theory, we propose an online algorithm for updating the RBF centers to remove the assumption. In addition to proving boundedness of the resulting neuro-adaptive controller, a connection is made between PE signals and kernel methods. Simulation results show improved performance.

Published in:

IEEE Transactions on Neural Networks and Learning Systems  (Volume:23 ,  Issue: 7 )