By Topic

Design and Development of a Flexure-Based Dual-Stage Nanopositioning System With Minimum Interference Behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Qingsong Xu ; Dept. of Electromech. Eng., Univ. of Macau, Macao, China

Dual-servo systems (DSSs) are highly desirable in micro-/nanomanipulation when high positioning accuracy, long stroke motion, and high servo bandwidth are required simultaneously. This paper presents the design and development of a new flexure-based dual-stage nanopositioning system. A coarse voice coil motor (VCM) and a fine piezoelectric stack actuator (PSA) are adopted to provide long stroke and quick response, respectively. A new decoupling design is carried out to minimize the interference behavior between the coarse and fine stages by taking into account actuation schemes as well as guiding mechanism implementations. Both analytical results and finite-element model (FEM) results show that the system is capable of over 10 mm traveling, while possessing a compact structure. To verify the decoupling property, a single-input-single-output (SISO) control scheme is realized on a prototype to demonstrate the performance of the DSS without considering the interference behavior. Experimental results not only confirm the superiority of the dual-servo stage over the standalone coarse stage but reveal the effectiveness of the proposed idea of decoupling design.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:9 ,  Issue: 3 )