By Topic

Morpholexical and Discriminative Language Models for Turkish Automatic Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper introduces two complementary language modeling approaches for morphologically rich languages aiming to alleviate out-of-vocabulary (OOV) word problem and to exploit morphology as a knowledge source. The first model, morpholexical language model, is a generative n -gram model, where modeling units are lexical-grammatical morphemes instead of commonly used words or statistical sub-words. This paper also proposes a novel approach for integrating the morphology into an automatic speech recognition (ASR) system in the finite-state transducer framework as a knowledge source. We accomplish that by building a morpholexical search network obtained by the composition of lexical transducer of a computational lexicon with a morpholexical language model. The second model is a linear reranking model trained discriminatively with a variant of the perceptron algorithm using morpholexical features. This variant of the perceptron algorithm, WER-sensitive perceptron, is shown to perform better for reranking n -best candidates obtained with the generative model. We apply the proposed models in Turkish broadcast news transcription task and give experimental results. The morpholexical model leads to an elegant morphology-integrated search network with unlimited vocabulary. Thus, it is highly effective in alleviating OOV problem and improves the word error rate (WER) over word and statistical sub-word models by 1.8% and 0.4% absolute, respectively. The discriminatively trained morpholexical model further improves the WER of the system by 0.8% absolute.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 8 )