By Topic

Quasi-Z-Source Inverter-Based Photovoltaic Generation System With Maximum Power Tracking Control Using ANFIS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Haitham Abu-Rub ; Deptt. of Electrical & Computer Engineering, Texas A&M university at Qatar, Qatar ; Atif Iqbal ; Sk. Moin Ahmed ; Fang Z. Peng
more authors

The paper proposes an artificial-intelligence-based solution to interface and deliver maximum power from a photovoltaic (PV) power generating system in standalone operation. The interface between the PV dc source and the load is accomplished by a quasi-Z-source inverter (qZSI). The maximum power delivery to the load is ensured by an adaptive neuro-fuzzy inference system (ANFIS) based on maximum power point tracking (MPPT). The proposed ANFIS-based MPPT offers an extremely fast dynamic response with high accuracy. The closed-loop control of the qZSI regulates the shoot through duty ratio and the modulation index to effectively control the injected power and maintain the stringent voltage, current, and frequency conditions. The proposed technique is tested for isolated load conditions. Simulation and experimental approaches are used to validate the proposed scheme.

Published in:

IEEE Transactions on Sustainable Energy  (Volume:4 ,  Issue: 1 )