Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:00 AM EDT. We apologize for the inconvenience.
By Topic

High-Level Scheduling of Energy Optimal Trajectories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Oskar Wigstrom ; Automation Research Group, Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden ; Bengt Lennartson ; Alberto Vergnano ; Claes Breitholtz

The reduction of energy consumption is today addressed with great effort in manufacturing industry. In this paper, we improve upon a previously presented method for robotic system scheduling. By applying dynamic programming to existing trajectories, we generate new energy optimal trajectories that follow the same path but in a different execution time frame. With this new method, it is possible to solve the optimization problem for a range of execution times for the individual operations, based on one simulation only. The minimum energy trajectories can then be used to derive a globally energy optimal schedule. A case study of a cell comprised of four six-link manipulators is presented, in which energy optimal dynamic time scaling is compared to linear time scaling. The results show that a significant decrease in energy consumption can be achieved for any given cycle time.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:10 ,  Issue: 1 )