By Topic

Study of Microwave Backscattering From Two-Dimensional Nonlinear Surfaces of Finite-Depth Seas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ding Nie ; Sch. of Sci., Xidian Univ., Xi''an, China ; Min Zhang ; Chao Wang ; Hong-Cheng Yin

This paper presents a study of the microwave backscattering from 2-D time-evolving nonlinear surfaces of a sea with finite depth by using the second-order small-slope approximation. According to the shallow-water dispersion relation, the revised nonlinear hydrodynamic choppy wave model in connection with an experiment-verified sea spectrum for finite-depth water is employed to construct the wave profiles in the finite-depth sea. The numerical results show that the discrepancy between the choppy surfaces of the infinite-depth sea and their finite-depth counterparts for monostatic normalized radar cross section is much smaller than that between the linear surfaces and the nonlinear choppy surfaces. Furthermore, the comparison of the Doppler spectra of the backscattered echoes from the linear and nonlinear choppy sea surfaces shows that the nonlinear hydrodynamic features significantly impact the Doppler spectrum. In particular, the Doppler spectrum for nonlinear finite-depth sea presents much higher second-order peaks and increased spectral amplitudes in the frequency range around the Doppler peak frequency, which reiterates the importance of the role that the nonlinear hydrodynamic effect of waves played in the interpretation of backscattering from finite-depth nearshore seas from the qualitative point of view.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 11 )