By Topic

RBF Networks Under the Concurrent Fault Situation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chi-Sing Leung ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Sum, J.P.-F.

Fault tolerance is an interesting topic in neural networks. However, many existing results on this topic focus only on the situation of a single fault source. In fact, a trained network may be affected by multiple fault sources. This brief studies the performance of faulty radial basis function (RBF) networks that suffer from multiplicative weight noise and open weight fault concurrently. We derive a mean prediction error (MPE) formula to estimate the generalization ability of faulty networks. The MPE formula provides us a way to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. Based on the MPE result, we propose methods to optimize the regularization parameter, as well as the RBF width.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 7 )